144 research outputs found

    Distributed Task-priority Based Control in Area Coverage & Adaptive Sampling

    Get PDF
    Abstract\u2014The paper presents the first simulative results and algorithmic developments of the task-priority based control applied to a distributed sampling network in an area coverage or adaptive sampling mission scenario. The proposed approach allowing the fulfilment of a chain of tasks with decreasing priority each of which directly related to both operability and safety aspects of the entire mission. The task-priority control is presented both in the centralized and decentralized implementations showing a comparison of performance. Finally simulations of the area coverage mission scenario are provided showing the effectiveness of the proposed approac

    Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis

    Get PDF
    Objective: To measure body water distribution and to evaluate the accuracy of eight-polar bioelectrical impedance analysis (BIA) for the assessment of total body water (TBW) and extracellular water (ECW) in severe obesity. Design: Cross-sectional study. Setting: Obesity clinic. Subjects: In all, 75 women aged 18-66 y, 25 with body mass index (BMI) between 19.1 and 29.9 kg/m(2) (ie not obese), 25 with BMI between 30.0 and 39.9 kg/m(2) (ie class I and II obese), and 25 with BMI between 40.0 and 48.2 kg/m(2) (ie class III obese). Methods: TBW and ECW were measured by (H2O)-H-2 and Br dilution. Body resistance (R) was obtained by summing the resistances of arms, trunk and legs as measured by eight-polar BIA (InBody 3.0, Biospace, Seoul, Korea). The resistance index at a frequency of x kHz (RIx) was calculated as height 2/R-x. Results: ECW: TBW was similar in women with class III (46 +/- 3%, mean +/- s.d.) and class I-II obesity (45 +/- 3%) but higher than in nonobese women (39 +/- 3%, P < 0.05). In a random subsample of 37 subjects, RI500 explained 82% of TBW variance (P < 0.0001) and cross-validation of the obtained algorithm in the remaining 38 subjects gave a percent root mean square error (RMSE%) of 5% and a pure error (PE) of 2.1 l. In the same subjects, RI5 explained 87% of ECW variance (P < 0.0001) and cross-validation of the obtained algorithm gave a RMSE% of 8% and a PE of 1.4 l. The contribution of weight and BMI to the prediction of TBW and ECW was nil or negligible on practical grounds. Conclusions: ECW: TBW is similar in women with class I-II and class III obesity up to BMI values of 48.2 kg/m(2). Eight-polar BIA offers accurate estimates of TBW and ECW in women with a wide range of BMI (19.1-48.2 kg/m(2)) without the need of population-specific formulae

    Attention Capture by Direct Gaze is Robust to Context and Task Demands

    Get PDF
    The final publication is available at Springer via https://dx.doi.org/10.1007/s10919-011-0128-z.Eye-tracking was used to investigate whether gaze direction would influence the visual scanning of faces, when presented in the context of a full character, in different social settings, and with different task demands. Participants viewed individual computer agents against either a blank background or a bar scene setting, during both a free-viewing task and an attractiveness rating task for each character. Faces with a direct gaze were viewed longer than faces with an averted gaze regardless of body context, social settings, and task demands. Additionally, participants evaluated characters with a direct gaze as more attractive than characters with an averted gaze. These results, obtained with pictures of computer agents rather than real people, suggest that direct gaze is a powerful attention grabbing stimulus that is robust to background context or task demands.103305-1/Canadian Institutes of Health Research89822-1/Canadian Institutes of Health Research103305-1/PHS HHS/United States89822-1/PHS HHS/United State

    Calibration sphere for low-frequency parametric sonars

    Get PDF
    Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 121 (2007): 1482-1490, doi:10.1121/1.2434244.The problem of calibrating parametric sonar systems at low difference frequencies used in backscattering applications is addressed. A particular parametric sonar is considered: the Simrad TOPAS PS18 Parametric Sub-bottom Profiler. This generates difference-frequency signals in the band 0.5–6 kHz. A standard target is specified according to optimization conditions based on maximizing the target strength consistent with the target strength being independent of orientation and the target being physically manageable. The second condition is expressed as the target having an immersion weight less than 200 N. The result is a 280-mm-diam sphere of aluminum. Its target strength varies from −43.4 dB at 0.5 kHz to −20.2 dB at 6 kHz. Maximum excursions in target strength over the frequency band due to uncertainty in material properties of the sphere are of order ±0.1 dB. Maximum excursions in target strength due to variations in mass density and sound speed of the immersion medium are larger, but can be eliminated by attention to the hydrographic conditions. The results are also applicable to the standard-target calibration of conventional sonars operating at low-kilohertz frequencies

    Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems

    Get PDF
    P. 1-15Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.S

    Take it personally: Advances in custom instrumentation for corrective osteotomy of the radius

    Get PDF
    Malunion of the distal radius is a common complication following a distal radius fracture. The surgical treatment of symptomatic distal radius malunion is Corrective Osteotomy (CO) procedure aimed at the restoration of the anatomical alignment of the distal radius articular surface in the wrist joint. Traditional 2D imaging techniques in the management of malunion have demonstrated to be limited in pre-, intra-, and postoperative imaging and visualization of the bone architecture. In the last decades, several innovations took place in pre- and intra- operative computer-assisted surgical systems, thanks to the advances in medical image acquisition and processing. In the field of corrective distal radius osteotomy, one of the most successful innovations has been the introduction of 3D printed Patient Specific Instruments (PSI). In particular, it has been demonstrated that the combined use of 3D pre-operative planning and PSIs in corrective osteotomy of the radius is beneficial in terms of final surgical outcome. However, design methods and design criteria of PSIs have not yet been entirely explored. Therefore, in this thesis, we aimed to: Enhance our knowledge on the use of patient-specific guides, with a special focus on quantification of the positioning accuracy; design PSIs for minimally invasive procedures that are biomechanically optimized to promote bone-healing and improve the speed and user-friendliness of the workflow of PSIs design to render the overall approach less expensive
    corecore